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Molecular hydrodynamic theory of supercooled liquids and colloidal suspensions under shear
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We extend the conventional mode-coupling theory of supercooled liquids to systems under stationary shear
flow. Starting from generalized fluctuating hydrodynamics, a nonlinear equation for the intermediate scattering
function is constructed. We evaluate the solution numerically for a model of a two-dimensional colloidal

suspension and find that the structural relaxation time decreases asġ2n with an exponentn<1, whereġ is the
shear rate. The results are in qualitative agreement with recent molecular dynamics simulations. We discuss the
physical implications of the results.
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Recently, there has been an explosion of interest in un
standing out of equilibrium properties in supercooled liqui
In general, the nonequilibrium behavior of a glassy system
characterized by a violation of the fluctuation-dissipati
theorem and the absence of time translation invariance
the particular case where the system is subjected to a ho
geneous, steady shear flow, time translation invariance is
covered. This simpler nonequilibrium situation is of intere
for two reasons. First, understanding the rheological prop
ties of complex fluids such as colloidal suspensions
polymers at a microscopic level is important for the des
and control of new materials. On a more fundamental le
it has recently been suggested that for supercooled liq
there are fundamental connections between the standard
modynamic control variables of temperature and density
the equilibrium case and steady state shear out of equilibr
@1#. A major goal of this work is to develop a theory th
provides an explicit microscopic connection between
temperature, density, and shear rate in a supercooled liq

Dense colloidal suspensions are known to exhibit we
shear thinning behavior. Such behavior is predicted
simple liquids as well, but the effect is too small to obser
at temperatures well above the glass transition. For su
cooled liquids, however, the situation is different. Recent
merical simulations have revealed anomalous rheological
havior in supercooled liquids. Yamamoto and Onuki@2# and
Berthier and Barrat@3# have simulated supercooled liquid
under strong stationary shear flow and observed a chara
istic shear dependence of the structural relaxation time

the shear viscosity,ta ,h}ġ2n, whereta is the structural

relaxation time,h is the shear viscosity,ġ is the shear rate
and the exponentn is empirically found to range between 2
and 1. An abstract schematic approach based on the ex
solvablep-spin spin glass has been proposed and studied
Berthier, Barrat, and Kurchan@4#. This model predictsn
52/3 in agreement with the lower bound found in the sim
lations of Berthier and Barrat@3#. Since this model is sche
matic, it cannot be used to understand in detail the mic
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scopic relationship between fluid structure and dynamics
function of thermodynamic control variables and extern
driving.

In this paper, we shall generalize the mode-coupl
theory developed to describe the fluctuations in an equi
rium state to that of a system under a stationary shear fl
Our starting point is generalized fluctuating hydrodynami
Using several approximations, we obtain a closed nonlin
equation for the sheared generalization of the intermed
scattering function. In this paper, we shall consider both n
mal liquids as well as the overdamped Brownian behavio
a colloidal suspension in the absence of hydrodynamic in
actions. Numerical results will only be presented for t
Brownian case, but the more general results derived h
could be used to make quantitative contact with recent m
lecular dynamics simulations.

Consider the shear flow given by

v0~r !5G•r5~ ġy,0,0!, ~1!

where (G)ab5ġdaxdby is the velocity gradient matrix. The
hydrodynamic fluctuations for densityr(r ,t) and the veloc-
ity field v(r ,t) obey the following set of Langevin equation
@5,6#:

]r

]t
52“•~rv!,

]~rv!

]t
1“•~rvv!52

r

m
“

dF
dr

2
z0

m
r~v2v0!1fR , ~2!

where z0 and m are the collective friction coefficient an
mass for colloidal particles.fR(r ,t) is the random force. The
z0 term is specific for the colloidal case. In the case
atomic liquids, the friction term should be replaced by
stress term that is proportional to the gradient of veloc
field multiplied by the position dependent shear viscositi
Both cases, however, lead to the same dynamical behavi
long time scales. We neglect the weakr dependence of the
friction coefficient, which could arise from hydrodynam
interactions between colloidal particles in the Brownian ca
The first term in the right-hand side of the equation for t
momentum is the pressure term, andF is the total free en-
ergy in a stationary state. Here we assume that the free
©2002 The American Physical Society01-1
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ergy is well approximated by that of the equilibrium for
and is given by a well-known expression

bF.E dr r~r !$ ln r~r !21%

2
1

2E dr1E dr2 dr~r1!c~r 12!dr~r2!, ~3!

whereb51/kBT andc(r ) is the direct correlation function
Under shear, it is expected thatc(r ) will be distorted and
should be replaced by a nonequilibrium, steady state fo
cnoneq(r ), which is an anisotropic function ofr . The effect of
shear on the static correlation functions has been stu
@7,8# and is found that the distortion is characterized by
Péclet number Pe5ġs2/D0, wheres is the diameter of the
particle andD05kBT/z0 is the diffusion constant. Thus, i
the Péclet number is small, the above assumption is valid
necessary, the full anisotropic steady state structure ma
used. By linearizing Eq.~2! around the stationary state asr
5r01dr and v5v01dv, wherer0 is the average density
we obtain the following equations:

S ]

]t
2k•G•

]

]kD drk~ t !52 ikJk~ t !,

S ]

]t
2k•G•

]

]k
1 k̂•G• k̂D Jk~ t !52

ik

mbS~k!
drk~ t !

2
1

mbEq
i k̂•qc~q!drk2q~ t !drq~ t !2

z0

m
Jk~ t !1fRk~ t !,

~4!

where c(q) is the Fourier transform ofc(r ), k̂[k/uku,
Jk(t)5r0k̂•dvk(t) is the longitudinal momentum fluctua
tion, and*q[*dq/(2p)d for a d-dimensional system. Note
that our approximate equation does not contain coupling
transverse momentum fluctuations even in the presenc
shear.

In order to construct equations for the appropriate co
lations from the above expressions, an approximate sym
try is necessary. In the presence of shear, translational in
ance is violated. In other words, correlations of arbitra
fluctuations, f (r ,t) and g(r ,t), do not satisfy
^ f (r ,t)g(r 8,0)&Þ^ f (r2r 8,t)g(0,0)&. Instead, we shall as
sume that the following symmetry is valid@7#:

^ f ~r ,t !g~r 8,0!&5^ f ~r2r 8~ t !,t !g~0,0!&, ~5!

where we defined the time-dependent position vector
r (t)[exp@Gt#•r5r1ġtyêx , whereêx is an unit vector ori-
ented along thex axis. In wave vector space, this is e
pressed as

^ f k~ t !gk8
* ~0!&5^ f k~ t !gk(t)* ~0!&3dk(t),k8

5^ f k8(2t)~ t !gk8
* ~0!&3dk,k8(2t) , ~6!
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wherek(t)5exp@tGt#•k5k1ġtkxêy , where tG denotes the
transpose ofG anddk,k8[(2p)dV21d(k2k8) for a system
of volumeV.

Equation ~5! states that the fluctuations satisfy trans
tional invariance in a reference frame flowing with the she
contours. This approximation holds for long wavelengt
where the direct interactions between particles are not imp
tant. On the other hand, for correlations between partic
separated by molecular length scales, this is not gener
true. The validity of this approximation for molecular leng
scales should be systematically examined in the future.

Using this approximation, it is straightforward to con
struct the mode-coupling equations for the appropriate co
lation functions. We shall derive the equation for the int
mediate scattering function, defined by

F~k,t ![
1

N
^drk(2t)~ t !drk* ~0!&, ~7!

whereN is the total number of the particles in the syste
Note that the wave vector indrk(t) is now replaced by a
time-dependent one,k(2t).

Equation~4! has a nonlinear term

Rk~ t !52
1

mbEq
i ~ k̂•q!c~q!drk2q~ t !drq~ t !. ~8!

This term can be renormalized with the definition of a ge
eralized friction coefficient following the standard procedu
of derivation of the mode-coupling equations@5,9#. To low-
est order in the fluctuations, we have

S ]

]t
2k•G•

]

]k
1 k̂•G• k̂D Jk~ t !52

ik

mbS~k!
drk~ t !

2
1

mE
2`

t

dt8E dk8 z~k,k8,t2t8!Jk8~ t8!1fRk8 ~ t !,

~9!

where z(k,k8,t) is the generalized friction coefficient an
fRk8 (t) is a corresponding random force.z(k,k8,t) is given
by the sum of the bare friction coefficient and the mod
coupling term as

z~k,k8,t !5z032d~ t !1dz~k,k8,t !, ~10!

with the mode-coupling contribution given by

dz~k,k8,t !5
m2b

N
^Rk~ t !Rk8

* ~0!&. ~11!

Substituting Eq.~8! into the above expression, we obtain

dz~k,k8t !5
1

bNEq
E

q8
k̂•qc~q!k̂8•q8c~q8!

3^drk2q~ t !drq~ t !drk82q8
* ~0!drq8

* ~0!&.

~12!
1-2
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This involves a four-point correlation function. Using th
Gaussian approximation, this can be decomposed int
product of two-point correlation functions as

^drk2q~ t !drq~ t !drk82q8
* ~0!drq8

* ~0!&.N2F„k~ t !

2q~ t !,t…F„q~ t !,t…$dk(t),k8dq(t),q81dk(t),k8dq(t),k82q8%,

~13!

where use has been made of the translational invaria
Eq. ~6!.

Substituting Eq.~13! back to Eq.~12!, we obtain

dz~k,k8,t !5dz~k,t !dk(t),k8, ~14!

with

dz~k,t !5
r0

b E
q
$k̂•qc~q!1 k̂•~k2q!c~k2q!%

3 k̂~ t !•q~ t !c„q~ t !…F„k~ t !2q~ t !,t…F„q~ t !,t…

5
r0

2bEq
V~k,q!V„k~ t !,q~ t !…F„k~ t !

2q~ t !,t…F„q~ t !,t…, ~15!

whereV(k,q) is the vertex function given by

V~k,q!5 k̂•$qc~q!1~k2q!c~k2q!%. ~16!

From these results and Eq.~9!, the equation for the correla
tion function,

C~k,t ![
1

N
^Jk(2t)~ t !nk* ~0!&,

is given by

dC~k,t !

dt
52 k̂~2t !•G• k̂~2t !C~k,t !2

ik~2t !

mbS„k~2t !…
F~k,t !

2
1

mE
0

t

dt8 dz„k~2t !,t2t8…C~k,t8!. ~17!

Note that in the above equation, the differential opera
k•G•]/]k disappears because

dC~k,t !

dt
5

]C~k,t !

]t
2k~2t !•G•

]

]k~2t !
C~k,t !. ~18!

Likewise, the continuity equation@the first term in Eq.~4!#
can be written as

dF~k,t !

dt
52 ik~2t !C~k,t !. ~19!

This equation together with Eq.~17! comprises the closed se
of the mode-coupling equations forF(k,t) andC(k,t) under
shear.
05050
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For colloidal suspensions the relaxation time of the m
mentum fluctuations is of the order oftm5m/z0, and is
much shorter than the relaxation time for density fluctu
tions, which is of the order of or longer thantd5s2/D0. For
the time scale of interest,k̂(2t)•G• k̂(2t) as well as the
inertial term can be neglected in the equation for the mom
tum fluctuations sinceġtm!1 in realistic situations. Thus
the equation for the momentum fluctuations may be writ
as

052
ik~2t !

bS„k~2t !…
F~k,t !2z0C~k,t !

2E
0

t

dt8 dz„k~2t !,t2t8…C~k,t8!. ~20!

Substituting this back into Eq.~19!, we arrive at

dF~k,t !

dt
52

D0k~2t !2

S„k~2t !…
F~k,t !

2E
0

t

dt8 M „k~2t !,t2t8…
dF~k,t8!

dt8
, ~21!

where

M ~k,t !5
r0D0

2

k

k~ t !Eq
V~k,q!V„k~ t !,q~ t !…F„k~ t !

2q~ t !,t…F„q~ t !,t…. ~22!

Equations~21! and~22! are the major results of this paper. I
the absence of the shear, they reduce to the conventi
mode-coupling equations@10#.

In order to study the shear thinning effect in the sup
cooled state, we shall solve Eqs.~21! and ~22! numerically.
Solving this equation is more difficult than solving the co
responding equation in the equilibrium case because
wave vectors are distorted by shear and the system is
isotropic. For simplicity, we shall consider a hypothetic
two-dimensional colloidal suspension that is simple
handle numerically but still undergoes an ergodic-nonergo
transition below a certain density. The shear flow occurs
the x direction. We have chosen the following form of th
static structure factorS(k):

S~k!5SPY~k1k0 ,ar0! f ~k2kc!, ~23!

whereSPY(k,r) is the static structure factor for a hard-sphe
system at the densityr obtained from the Percus-Yevick clo
sure,k0 anda are parameters that were chosen in such a w
thatS(k) is short ranged and has broader peak.f (k2kc) is a
cutoff function that makesS(k) approach unity smoothly for
wave vectors larger than the cutoffkc . The choice ofS(k)
mimics the shape ofS(k) of real systems although it doe
not satisfy sum-rule restrictions. In our calculation, we cho
k054.0, a532, andkc54.0. For this system, the ergodic
nonergodic transition occurs around a ‘‘density’’rcs

2.1.2
31022 in the absence of shear. In Fig. 1, we show the
1-3
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havior of F(k,t) for rs251.1531022, slightly below rc .
The wave vector isk5(0,2s). Sincekx50, the expression
for F(k,t) is equivalent to that in the quiescent sta
Feq(k,t)[N21^drk(t)drk* (0)&. Thus, there is no direct ef
fect from the convection term but, due to the nonlinear c
pling through the mode-coupling termM (k,t), a strong
shear dependence of the relaxation time can be seen.
dependence of the structural relaxation timeta(ġ) on the
shear rateġ is estimated from the value whereF(k,ta)
5e21. For the particular case ofrs251.1531022 we find
the power lawta.ġ2n with n.0.8 for Pe>1023, andta
saturates to the equilibrium value at Pe<1023. This is simi-
lar to the behavior reported in recent molecular dynam
simulations. For values ofrs2.1.231022 ~not shown!, we

FIG. 1. NormalizedF(k,t) for k5(0,2s) for various shear

ratesġ. The ‘‘density’’ is rs251.1531022. From the right to the

left, Pe5ġs2/D050, 1024, 1023, 1022, 1021, and 1. The results
for Pe50 and 1024 are almost indistinguishable. The timet is
scaled bys2/D0.
m
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find that the exponentn saturates at a higher value, in agre
ment with the simulations of Berthier and Barrat@3#.

The physical picture that emerges from the molecular
drodynamic theory developed here is simple. The shear fl
perturbs and randomizes the coupling between differ
modes. Physically, this perturbation dissipates the cage
transiently immobilizes particles. Mathematically, this is r
flected through the time dependence of the vertex, wh
vanishes ast→`. This simple picture illustrates the essen
of the mode-coupling approach to the shear thinning effec
simple supercooled systems. Note that even for fluctuati
orthogonal to the direction of flow, thinning occurs due to t
coupling of fluctuations in all directions. In this sense, t
picture of cage breakup in a supercooled liquid due to ex
nal flow is quite different from that of dynamic critical phe
nomena under shear, in which the faster relaxation occ
solely because the fluctuations are stretched out by the s
flow and pushed to larger wave vectors where faster re
ation occurs.

In this paper, we have derived an approximate mo
coupling theory for a supercooled liquid under steady sh
flow. The most important assumption is the use of appro
mate translational invariance, Eq.~6!. This allows one to
derive a nonlinear integro-differential equation forF(k,t),
similar to the one for the equilibrium state. The numeric
analysis for a hypothetical two-dimensional colloidal susp
sion has been carried out and a typical behavior ofF(k,t)
was shown to be consistent with recent simulations. The
laxation time is found to have the strong shear depende
More systematic and thorough analysis of the numerical
lutions of the mode-coupling equations are left for futu
work @11#.

The authors acknowledge support from NSF Grant N
0134969. The authors would like to express their gratitude
Dr. Ryoichi Yamamoto for suggesting this problem durin
his stay at Harvard, and for useful discussions.
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